Berezin quantization and unitary representations of Lie groups

نویسندگان

  • D. Bar-Moshe
  • M. S. Marinov
چکیده

In 1974, Berezin proposed a quantum theory for dynamical systems having a Kähler manifold as their phase space. The system states were represented by holomorphic functions on the manifold. For any homogeneous Kähler manifold, the Lie algebra of its group of motions may be represented either by holomorphic differential operators (“quantum theory”), or by functions on the manifold with Poisson brackets, generated by the Kähler structure (“classical theory”). The Kähler potentials and the corresponding Lie algebras are constructed now explicitly for all unitary representations of any compact simple Lie group. The quantum dynamics can be represented in terms of a phase-space path integral, and the action principle appears in the semi-classical approximation.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Quantization and Representations of Solvable Lie Groups

Introduction. In this note, we will announce a characterization of a connected, simply connected Type I solvable Lie group, G, and present a complete description of the set of all unitary equivalence classes of irreducible unitary representations of G together with a construction of an irreducible representation in each equivalence class. This result subsumes the results previously obtained on ...

متن کامل

Geometric quantization of Hamiltonian actions of Lie algebroids and Lie groupoids

We construct Hermitian representations of Lie algebroids and associated unitary representations of Lie groupoids by a geometric quantization procedure. For this purpose we introduce a new notion of Hamiltonian Lie algebroid actions. The first step of our procedure consists of the construction of a prequantization line bundle. Next, we discuss a version of Kähler quantization suitable for this s...

متن کامل

Quantum Half-Planes via Deformation Quantization

We give an idea of constructing irreducible unitary representations of Lie groups by using Fedosov deformation quantization in the concrete case of the group Aff(R) of affine transformations of the real line. By an exact computation of the star-product and the operator ˆ̀Z , we show that the resulting representations exhausted all the irreducible representations of this groups.

متن کامل

فرمولبندی هندسی کوانتش تغییرشکل برزین

  In this paper we try to formulate the Berezin quantization on projective Hilbert space P(H) and use its geometric structure to construct a correspondence between a given classical theory and a given quantum theory. It wil be shown that the star product in berezin quantization is equivalent to the Posson bracket on coherent states manifold M, embodded in P(H), and the Berezin method is used to...

متن کامل

A Unified Approach to the Minimal Unitary Realizations of Noncompact Groups and Supergroups

We study the minimal unitary representations of non-compact groups and supergroups obtained by quantization of their geometric realizations as quasi-conformal groups and supergroups. The quasi-conformal groups G leave generalized light-cones defined by a quartic norm invariant and have maximal rank subgroups of the form H × SL(2,R) such that G/H × SL(2,R) are para-quaternionic symmetric spaces....

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1994